Synthetic CO2-fixation enzyme cascades immobilized on self-assembled nanostructures that enhance CO2/O2 selectivity of RubisCO
نویسندگان
چکیده
BACKGROUND With increasing concerns over global warming and depletion of fossil-fuel reserves, it is attractive to develop innovative strategies to assimilate CO2, a greenhouse gas, into usable organic carbon. Cell-free systems can be designed to operate as catalytic platforms with enzymes that offer exceptional selectivity and efficiency, without the need to support ancillary reactions of metabolic pathways operating in intact cells. Such systems are yet to be exploited for applications involving CO2 utilization and subsequent conversion to valuable products, including biofuels. The Calvin-Benson-Bassham (CBB) cycle and the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) play a pivotal role in global CO2 fixation. RESULTS We hereby demonstrate the co-assembly of two RubisCO-associated multienzyme cascades with self-assembled synthetic amphiphilic peptide nanostructures. The immobilized enzyme cascades sequentially convert either ribose-5-phosphate (R-5-P) or glucose, a simpler substrate, to ribulose 1,5-bisphosphate (RuBP), the acceptor for incoming CO2 in the carboxylation reaction catalyzed by RubisCO. Protection from proteolytic degradation was observed in nanostructures associated with the small dimeric form of RubisCO and ancillary enzymes. Furthermore, nanostructures associated with a larger variant of RubisCO resulted in a significant enhancement of the enzyme's selectivity towards CO2, without adversely affecting the catalytic activity. CONCLUSIONS The ability to assemble a cascade of enzymes for CO2 capture using self-assembling nanostructure scaffolds with functional enhancements show promise for potentially engineering entire pathways (with RubisCO or other CO2-fixing enzymes) to redirect carbon from industrial effluents into useful bioproducts.
منابع مشابه
Breaking the rules of Rubisco catalysis
The photosynthetic CO2-fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), is renowned for its slow catalytic rate and difficulty in distinguishing between the substrate of photosynthesis, CO2, and one of the products, O2. The oxygenase activity was discovered 45 years ago (Bowes et al., 1971), nearly 20 years after the discovery of the carboxylase activity (Quayle et al.,...
متن کاملThe oxygen and carbon dioxide compensation points of C3 plants: possible role in regulating atmospheric oxygen.
The O2 and CO2 compensation points (O2 and CO2) of plants in a closed system depend on the ratio of CO2 and O2 concentrations in air and in the chloroplast and the specificities of ribulose bisphosphate carboxylase/oxygenase (Rubisco). The photosynthetic O2 is defined as the atmospheric O2 level, with a given CO2 level and temperature, at which net O2 exchange is zero. In experiments with C3 pl...
متن کاملControl of Rubisco function via homeostatic equilibration of CO2 supply
Rubisco is the most abundant protein on Earth that serves as the primary engine of carbon assimilation. It is characterized by a slow rate and low specificity for CO2 leading to photorespiration. We analyze here the challenges of operation of this enzyme as the main carbon fixation engine. The high concentration of Rubisco exceeds that of its substrate CO2 by 2-3 orders of magnitude; however, t...
متن کاملAssessment of structural and functional divergence far from the large subunit active site of ribulose-1,5-bisphosphate carboxylase/oxygenase.
Despite conservation of three-dimensional structure and active-site residues, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) enzymes from divergent species differ with respect to catalytic efficiency and CO2/O2 specificity. A deeper understanding of the structural basis for these differences may provide a rationale for engineering an improved enzyme, thereby leading to a...
متن کاملActivation of Rubisco regulates photosynthesis at high temperature and CO2.
T enzyme Rubisco, short for ribulose1,5-bisphosphate carboxylaseyoxygenase, is the enzyme that incorporates CO2 into plants during photosynthesis. As it constitutes about 30% of the total protein in a plant leaf, Rubisco is probably the most abundant protein on earth and a major sink for plant nitrogen. Rubisco is widely accepted as the ultimate rate-limiting step in photosynthetic carbon fixat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2017